Цель уплотнения бетонной смеси

В этой статье:

Уплотнение бетонной смеси

Цель уплотнения бетонной смеси

Уплотнение бетонной смеси производят после ее укладки в форму, таким образом, чтобы в ней не оставались свободные места, а углы и суженные места формы заполняют особенно тщательно.

После укладки бетонной смеси производят уплотнение ее вибрированием, виброштампованием, центрифугированием, вакуумированием, прокатом. Наиболее распространенным видом уплотнения бетонной смеси является вибрирование.

Степень уплотнения бетонной смеси с помощью вибраторов зависит в основном от частоты и амплитуды колебаний, а также от продолжительности вибрирования.

В результате уплотнения бетонная смесь заполняет форму, причем уплотненная бетонная смесь должна иметь однородное строение и минимальный объем воздушных пустот; после уплотнения остается не более 2 — 3% воздуха (т. е. 20 — 30 дм³ на 1 м³ бетона).

Для получения плотного бетона необходимо, чтобы удобоукладываемость бетонной смеси соответствовала принятому способу и интенсивности уплотнения. При сильном механическом уплотнении (рисунок-1) жесткие бетонные смеси укладываются плотно. В результате повышается прочность бетона (при сохранении одинакового расхода цемента).

Рисунок-1. Влияние интенсивности уплотнения на прочность бетона:

1 — сильное уплотнение; 2 — слабое уплотнение

Вибрирование бетона

Основным способом уплотнения бетонных смесей является вибрирование. При вибрировании частые колебания, создаваемые вибратором, вызывают колебательные движения частиц бетонной смеси. Силы внутреннего трения и сцепления между частицами уменьшаются, зерна заполнителей укладываются компактно, промежутки между ними заполняются цементным тестом, а пузырьки воздуха вытесняются наружу.

Плотность укладки бетонной смеси контролируют по величине коэффициента уплотнения, который равен отношению фактической объемной массы свежеуплотненного бетона к его расчетной объемной массе. Уплотнение считается «полным» при коэффициенте уплотнения 0,98 — 1.

Эффективность виброуплотнения зависит от продолжительности и интенсивности вибрирования. Интенсивность виброуплотнения характеризуют два параметра вынужденных колебаний: 1) амплитуда колебаний а (половина наибольшего перемещения частиц при колебательном движении); 2) частота колебаний ƒ (Гц) (число периодов колебаний в секунду).

Об интенсивности виброуплотнения можно судить по величине амплитудного значения ускорения w (см/с²), сообщаемого колеблющимся частицам при угловой скорости ω (рад/с); w=aω²=a4𲃲

Интенсивность вибрирования принято выражать в единицах земного ускорения g, например интенсивность равна 2g, 4g, 8g. Эта характеристика интенсивности показывает, во сколько раз ускорение, сообщаемое частицам при вибрировании, больше ускорения силы тяжести.

Эффективность уплотнения бетонной смеси значительно возрастает при резонансных режимах виброуплотнения, при которых частота вынужденных колебаний частиц смеси совпадает с частотой собственных колебаний вибратора.

При этом достигается плотная укладка бетонной смеси за короткое время. Интенсивность (см²/с³) виброуплотнения по В.Н.

Шмигальскому характеризуется произведением скорости колебаний ν= αω=а·2πƒ на ускорение:U=vw=8π³a²ƒ³, или в общем виде-U=ℜa²ƒ³.

Для каждой бетонной смеси имеется своя оптимальная интенсивность вибрирования, которая достигается правильным сочетанием амплитуды и частоты колебаний.

 На заводах сборных железобетонных изделий жесткие и малоподвижные бетонные смеси эффективно уплотнять на стационарных низкочастотных резонансных виброплощадках с амплитудой 0,7 мм и частотой 25 — 30 Гц; к тому же уровень шума при работе низкочастотных виброплощадок сравнительно невысок.

Для виброуплотнения подвижных и мелкозернистых бетонных смесей оптимальные амплитуды уменьшаются до 0,15 — 0,4 мм; соответственно необходимой интенсивности увеличивается частота колебаний до 50 — 150 Гц.

При принятых параметрах вынужденных колебаний для каждой бетонной смеси имеется своя критическая продолжительность виброуплотнения.

По Ю. Сторку, в начале виброуплотнения происходит разрушение свободной пространственной структуры бетонной смеси, насыпанной в форму, а затем смесь в виде сплошной разжиженной массы начинает вибрировать как одно целое. Возникновение связной системы проявляется в выделении влаги на поверхности смеси (рисунок-2).
Рисунок-2. Структура бетонной смеси:

а — рыхло насыпанной в форму; б — после виброуплотнения (по Ю. Сторку)

Более продолжительное вибрирование приводит к расслоению смеси и снижению прочности бетона. В зависимости от рода привода и движущей энергии различают электромеханические, электромагнитные и пневматические вибраторы.

Применяют главным образом вибраторы, приводимые в действие электродвигателем; колебания создаются механическим путем в результате вращения неуравновешенных грузов (эксцентриков или дебалансов), которые могут быть расположены непосредственно на оси ротора двигателя либо соединены с ним при помощи гибкого вала. Рабочая часть вибратора выполняется в виде площадки (виброплощадки, переносные поверхностные вибраторы), или наконечника (штыка, булавы и т. п.).

Для формования сборных железобетонных изделий широко используют стационарные виброплощадки различной грузоподъемности. Можно собирать виброплощадки необходимых размеров и нужной грузоподъемности (2, 4, 8, 12 и 24 т) из однотипных унифицированных виброблоков.

Предусматривается изготовление виброплощадок с различными режимами работы: одночастотных с гармоническими -вертикальными колебаниями, двухчастотных, виброударных и др. Схемы вибраторов представлены на рисунке-3.
Рисунок-3. Основные схемы вибраторов (по В. Д.

Мартынову)

При применении вибраторов наряду с обычными мерами по охране труда следует обращать особое внимание на технические мероприятия по устранению вредного действия вибрации на организм человека.

Переносные вибраторы применяют при изготовлении изделий (в особенности крупноразмерных) на стендах, а также для уплотнения монолитного бетона на строительной площадке.

Переносной поверхностный вибратор (рисунок-3) применяют при бетонировании плоских конструкций (плит, полов, дорожных покрытий), а внутренние вибраторы — при изготовлении сборных железобетонных конструкций в неподвижных формах и бетонировании монолитных конструкций.Эксцентриковые внутренние вибраторы имеют частоту 5820 — 5700 кол./мин.

Для уплотнения бетонных смесей, укладываемых в массивные (например, гидротехнические) сооружения, применяют перемещаемые краном пакеты внутренних вибраторов. Они позволяют устранить ручной труд, применять малоподвижные бетонные смеси (с осадкой конуса 0 — 2 см) и сильно увеличивать толщину слоя бетонирования. Этот способ уплотнения используют также для укладки камнебетона.

На практике часто используют комбинированные способы уплотнения бетонной смеси. Так, при формовании сборных железобетонных изделий из жестких и малоподвижных бетонных смесей применяют вибрирование под нагрузкой (рисунок-4).
Рисунок-4. Виды пригрузов при формовании изделий на виброплощадках:

а — безынерционным (пневматический); б — инерционный (гравитационный); в — то же, подрессорный; г — вибрационный

При величине прессующего давления поверхности изделия 0,05 — 0,15 МПа можно способом вибропрессования плотно уложить особо жесткие бетонные смеси с количеством воды затворения 120 — 130 кг/м³ и В/Ц= 0,3 — 0,35.

Способы уплотнения бетонной смеси

Виброштампование часто применяют для формования коробчатых и ребристых плит, лестничных маршей со ступеньками и других профилированных изделий. Бетонная смесь, уложенная в форму, формуется и уплотняется при помощи погружаемого в нее виброштампа.

Вибропрокат осуществляется на специальных вибропрокатных станках. Этим способом изготовляют изделия из тяжелого и легкого бетонов (например, вибропрокатные керамзитобетонные панели).

При центробежном способе формования для уплотнения бетонной смеси используют центробежную силу, возникающую при вращении формы с уложенной в нее бетонной смесью.

Для этой цели применяют так называемые центрифуги, представляющие собой форму трубчатого сечения, которой в процессе уплотнения сообщается вращение до 600…1000 мин -1.

Скорость вращения формы также может составлять 400 — 900 об/мин.

Рисунок-5. Центрифуга для изготовления труб

1-опорные ролики; 2-форма

Загруженная в форму бетонная смесь ( обязательно подвижной консистенции ) под действием центробежных сил , развивающихся при вращении, прижимается к внутренней поверхности формы и уплотняется при этом.

В результате различной плотности твердых компонентов бетонной смеси и воды из бетонной смеси удаляется до 20…30 % воды,тем самым понижается величина В/Ц, что способствует получению бетона высокой плотности.

Это явление также способствует уменьшению пористости и водопроницаемости бетона.Способ центрифугирования сравнительно легко позволяет получать изделия из бетона высокой плотности, прочности (40…60 МПа) и долговечности.

При этом для получения бетонной смеси высокой связности требуется большое количество цемента (400…450 кг/м³), иначе произойдет расслоение смеси под действием центробежных сил на мелкие и крупные зерна, так как последние с большой силой будут стремиться прижаться к поверхности формы.

Способом центрифугирования ( центробежное формование) формуют трубы, опоры линий электропередач, стойки под светильники.

Вибровакуумирование используют для уплотнения подвижных бетонных смесей.

Оно позволяет извлечь из свежеуложенной бетонной смеси 10 — 20% от общего количества воды затворения и получить более плотный бетон.

Вакуумирование осуществляют специальным оборудованием (вакуум-щитами, вакуумвкладышами и т. п.). Основной его частью является вакуум-полость, в которой создается разрежение порядка 75 — 85% от полного вакуума.

Вакуум-щиты укладывают своей рабочей поверхностью, снабженной фильтровальной тканью, на бетон. Фильтр предотвращает отсос частиц цемента в процессе вакуумирования.

При вакуумировании в бетонной смеси создается разрежение до 0,07…0,08 МПа и воздух, вовлеченный при ее приготовлении и укладке в форму а также немного воды удаляется из бетонной смеси под давлением этого разряжения: освободившиеся при этом места занимают твердые частицы и бетонная смесь приобретает повышенную плотность.

Кроме того наличие вакуума вызывает прессующее действие на бетонную смесь атмосферного давления , равного величине вакуума.Это также способствует уплотнению бетонной смеси.

Вакуумирование сочетается, как правило, с вибрированием.

В процессе вибрирования бетонной смеси, подвергнутой вакуумированию, происходит интенсивное заполнение твердыми компонентами пор, образовавшихся при вакуумировании на месте воздушных пузырьков и воды.

Однако вакуумирование в техническом отношении имеет важный технико-экономический недостаток, а именно: большую продолжительность процесса — 1…2 мин на каждый 1 см толщины изделия в зависимости от свойств бетонной смеси и величины сечения.

Толщина слоя, которая может быть подвергнута вакуумированию, не превышает 12… 15 см. Вследствие этого вакуумированию подвергают преимущественно массивные конструкции для придания поверхностному слою их особо высокой плотности.

В технологии сборного железобетона вакуумирование практически не находит применения.

Прессование
Прессование — редко применяемый способ уплотнения бетонной смеси в технологии сборного железобетона, хотя по техническим показателям отличается большой эффективностью, позволяя получать бетон высокой плотности и прочности при минимальном расходе цемента (100…150 кг/м³ бетона);

Распространению способа прессования препятствуют исключительно экономические причины. Прессующее давление, при котором бетон начинает эффективно уплотняться, — 10…15 МПа и выше.

Таким образом, для уплотнения изделия на каждый 1 м² его следует приложить нагрузку, равную 10… 15 МН.

Прессы такой мощности в технике применяют, например, для прессования корпусов судов, но стоимость их оказывается столь высокой, что полностью исключает экономическую целесообразность использования таких прессов.

В технологии сборного железобетона прессование используют как дополнительное приложение к бетонной смеси механической нагрузки при ее вибрировании. В этом случае потребная величина прессующего давления не выходит за пределы 500… 1000 Па. Технически такого давления достигают под действием статически приложенной нагрузки в результате принудительного перемещения отдельных частиц бетонной смеси.

Различают прессование штампами плоскими и профильными. Последние передают свой профиль бетонной смеси. Так формуют лестничные марши, некоторые виды ребристых панелей. В последнем случае способ прессования называют еще штампованием. Прокат является разновидностью прессования.

В этом случае прессующее давление передается бетонной смеси только через небольшую площадь катка, что соответственно сокращает потребность в давлении прессования. Но здесь особую значимость приобретают пластические свойства бетонной смеси, связность ее массы. При недостаточной связности будет происходить сдвиг смеси прессующим валком и разрыв ее.

117

Источник: https://stroivagon.ru/stroitelstvo/ustanovka-laminata.html

Уплотнение бетона

Технология возведения конструкций из бетона подразумевает приготовление бетонной смеси и ее уплотнение. Есть случаи, когда при замешивании раствора внутри появляются полости, которые могут нарушить структуру, снизить ее плотность.

Из-за этого в изделии появляются трещины, что в конечном итоге способно привести к разрушению бетонных конструкций. В процессе уплотнения специалисты удаляют из раствора воздух, лишнюю жидкость, за счет чего он становится более плотным.

Таким образом, изделие получается более прочным и долговечным.

Для чего применяется?

Уплотнение бетона считается самым ответственным этапом укладки цементных смесей. От того, насколько тщательно будет выполнено это действие, будут зависеть коэффициент бетона и основные характеристики изделия.

В ходе процедуры специалисты обрабатывают бетонную поверхность вручную или при помощи механических устройств, удаляя полости.

Это позволяет добиться однородности бетонного раствора, увеличить сцепление состава с другими элементами конструкции.

Способы

Строители используют следующие виды устройств при уплотнении смеси:

  • поверхностные (для верхнего слоя цемента);
  • глубинные (крупные бетонные конструкции);
  • наружные (устанавливаются перед уплотнением с краю деревянной опалубки или емкости с цементным раствором);
  • виброплощадки (применяются на специализированных предприятиях).

Существует разные способы уплотнить цементный раствор:

  1. Вручную. Практикуется в основном при частных строительных работах, так как этот метод помогает сэкономить средства на приобретение оборудования. К уплотнению вручную прибегают в тех случаях, когда необходимо обработать смесь в небольшом количестве. Как правило, в таких случаях раствор также изготавливают своими руками. Бетонная поверхность обрабатывается ломом, трамбовкой, лопатой и пр.
  2. Штыкование фундамента после заливки бетона.

    Штыкование. Для выполнения этой процедуры используется стержень из металла (к примеру, армированный прут) весом до четырех килограммов. При этом желательно, чтобы кончик стержня был закругленным. Он применяется для того, чтобы «проткнуть» бетон. Специалисты рекомендуют проштыковывать всю поверхность емкости со смесью. Этот способ позволяет уплотнить щебень, вытеснить воздух и лишнюю жидкость.

  3. Ручная трамбовка. Такой метод принято применять для утрамбовки тяжелых бетонных растворов. Для неармированных конструкций строители используют ручные либо механические трамбовки. Трамбование следует выполнять тщательно и послойно. Вместе с тем толщина уплотненного слоя должна составлять не более пятнадцати сантиметров.

Другие способы

К другим методам уплотнения относятся:

  1. Механический. К этому способу строители прибегают при обработке значительных объемов цемента. Процесс выполняется с помощью специальных приборов, к которым относятся поверхностные и внутренние виброустройства. Также специалисты пользуются механизмами, которые крепятся на деревянную опалубку или емкость со смесью. В частности, поверхностные виброрейки позволяют уплотниться только верхнему бетонному слою. Поэтому строители применяют его для изделий из тонкого слоя бетона: оснований для плитки, полов, дорог и др. Внутренняя виброрейка, в свою очередь, считается самой эффективной в сравнении с другими механизмами. Помимо этого, такие устройства просты в эксплуатации, ими пользуются для обработки бетона в труднодоступных участках. Вибраторы, которые устанавливаются на деревянной опалубке либо форме, надежно крепятся, уплотняя смесь за счет колебаний опалубки, передаваемых цементному раствору. Устройства для опалубок незаменимы для бетонирования изделий необычной формы.
  2. Виброуплотнение. Производится при помощи переносных и стационарных устройств. Применение переносных механизмов для сборных конструкций из железобетона ограничено. Ими пользуются при создании больших и тяжелых изделий. Виброплощадки необходимы в производстве железобетона на заводах, работающих по специальным схемам. Современный рынок предлагает большой выбор виброплощадок, среди которых электромагнитные, пневматические, комбинированные и др.
  3. Прессование. Специалисты реже прибегают к данному методу уплотнения смеси, хотя он считается эффективным, поскольку позволяет повысить прочность раствора при небольших расходах цемента. Этот способ не получил широкого распространения из-за своей дороговизны. Давление, необходимое для прессования бетона, должно составлять от 10 Мпа. Прессы, которые обладают подобной мощностью, используются в судостроительной сфере для создания новых кораблей. Однако следует отметить, что стоимость таких устройств для прессования не позволяет ими пользоваться для проведения частных строительных работ. Во время приготовления цементных растворов прессование необходимо применять только в качестве дополнительной нагрузки при виброуплотнении. Необходимая степень давления может составлять не выше 1 кПа. На современном рынке представлены плоские и профильные штампы. В частности, профильные штампы нужны для придания нужной фактуры тому или иному изделию. Так изготавливаются бетонные панели, пролеты лестниц и другие элементы и конструкции из этого материала. Такой вид прессования называют штампованием. Еще одним видом прессования считается прокат. При этом давление на цементный раствор осуществляется за счет катка. Это позволяет сократить расход электроэнергии из-за снижения давления во время прессования. Но способ имеет один недостаток, связанный со свойствами раствора. В некоторых случаях может произойти смещение или разрыв материала валиком.
  4. Бетонные полы, устраиваемые методом вакуумирования.

    Центрифугирование. При вращении состав уплотняется за счет прилегания к стенкам формы. После центрифугирования увеличивается плотность ингредиентов, входящих в цементный раствор. Помимо этого, из него выводится примерно 30 процентов воды. Это помогает повысить прочность бетона.

    Метод позволяет сделать долговечные изделия. Для центрифугирования потребуется больше цемента, чем для других видов уплотнения. Бетонный раствор будет обладать нужной вязкостью. Иначе под воздействием центрифуги состав расслоится.

    Технология помогает делать опоры ЛЭП, стойки и трубы.

  5. Вакуумирование. Метод позволяет разрежать воздух, благодаря чему все лишнее удаляется из смеси под сильным давлением. Соответственно, и плотность смеси повышается.

Рекомендации

Чтобы цементный состав был равномерно уплотнен, необходимо придерживаться следующих рекомендаций:

  1. Во время установки деревянной опалубки следует обратить внимание на надежную фиксацию деталей. На элементах конструкции не должно быть щелей (раствор бетона может выдавливаться через трещины). Необходимо, что опалубка быта отшлифованной и гладкой, в противном случае она будет оставлять вмятины на изделии. К тому же впоследствии в теле конструкции могут образоваться пустоты.
  2. Детали деревянной или фанерной опалубки, в том числе клинья, должны надежно фиксироваться, чтобы не произошло смещение досок.
  3. При виброуплотнении состава следует периодически менять положение виброрейки, иначе раствор будет неоднородным, образуются полости.
  4. Специалисты советуют не тратить много времени на работы, поскольку это способно вызвать расслоение, которое появляется по причине того, что крупный щебень сбивается внизу, а наверху скапливается только раствор цемента.

Дефекты бетонных и железобетонных конструкций из-за недостаточного уплотнения бетонной смеси.

Поскольку использование поверхностных вибрирующих устройств не позволяет визуально определить степень плотности, при выполнении строительных работ часто применяют дополнительное средство, которое поможет гарантировать прочность состава. Для этого строители добавляют к имеющемуся составу раствор с высокой пластичностью. По этой причине возрастает риск расслаивания изделия. Чтобы избежать такого недостатка, советуют увеличить количество цемента.

Коэффициент уплотнения

Оценить качество бетонного состава можно при помощи одного важного критерия. Речь идет о коэффициенте уплотнения.

Коэффициент определяется следующим образом: высчитывается соотношение удельной массы готовой смеси к значению, которое было получено при отсутствии пузырей воздуха внутри. Так, допустимым значением коэффициента считается 1.

Достичь показателя можно разными способами уплотнения бетона, выбор методов будет зависеть непосредственно от состава, назначения и фракций. Автоматизированные виброрейки значительно увеличивают качество раствора.

От чего зависит коэффициент?

Этот показатель определяется зернистостью состава, а также объектом, который будет бетонироваться, будь то отмостки, трассы, дорожки.

Выводы

Опытные строители утверждают, что от плотности бетонного раствора будет зависеть устойчивость и долговечность конструкции. Это необходимо учитывать, если вы хотите, чтобы изделие прослужило вам не один год.

Вовремя принятые меры помогут дополнительно повысить защиту конструкции от повреждений, сэкономить средства на реставрационных работах. Универсальные вибрационные устройства позволят получить высококачественный бетон.

Перед выполнением строительных работ нужно заблаговременно проконсультироваться со специалистами и подобрать необходимое оборудование. Эргономичные виброустройства позволяют строителям уплотнять цемент в самых разных условиях.

Для выполнения небольшого объема строительных работ профессионалы рекомендуют пользоваться портативным вибратором, весом до пяти килограммов. Для более масштабных работ строители применяют большие инструменты, позволяющие эффективно уплотнять бетон на производстве при большом фронте бетонных работ.

Источник: http://KlademBeton.ru/poleznoe/sposoby-uplotneniya-betonnoj-smesi.html

Бетонные работы. Уплотнение бетонной смеси

Едва ли не самое важное свойство бетонной смеси – свойство растекаться под воздействием своей массы или дополнительной нагрузки.

Бетонная смесь обладает одним очень важным свойством – свойством растекаться, благодаря чему можно изготовить изделия самой различной формы.

Именно благодаря этому свойству из нее можно получить огромное количество изделий самых разнообразных форм, и кроме того, есть возможность применить ее для различных способов уплотнения. Свойства смеси, такие как ее текучесть, и то, каким образом она была уплотнена, тесно взаимосвязаны.

Например, с малой текучестью нуждаются в энергичном уплотнении, и формирование бетонных изделий из них должно сопровождаться активным уплотнением в виде интенсивной вибрации или вибрации с дополнительным пригрузом.

Другие из известных бетонных работ по уплотнению – прессование, трамбование, прокат.

Смеси с большой подвижностью быстрее и легче всего уплотнять, применяя вибрацию. Сжимающие виды уплотнения, такие как прокат, прессование или трамбование, напротив, непригодны для них. Под напором ударов трамбовки или сильных прессующих движений бетон с большой текучестью разбрызгается трамбовкой или легко вытечет из-под пресса.

У литых есть способность увеличивать плотность под влиянием своей же массы. Для того чтобы дополнительно уплотнить бетон, иногда используется кратковременная вибрация.

Определение жесткости бетонной смеси при помощи специального прибора

Подводя итог сказанному, можно выделить следующие методы уплотнения: вибрирование, прокат, прессование, литье, трамбование и штыковка. Вибрирование является самым эффективным способом как в экономическом, так и в техническом отношении.

Его с успехом применяют, сочетая с иными видами механического уплотнения – прессованием (вибропрессованием), трамбованием (вибротрамбованием), прокатом (вибропрокатом).

Одним из видов механического уплотнения бетонной смеси с большой текучестью является центрифугирование, которое используют при формировании полых внутри изделий круглого сечения.

В получении смесей высокого качества хорошо зарекомендовала себя операция вакуумирования бетона во время его механического уплотнения вибрированием, хотя из-за большой продолжительности этого процесса его экономический эффект заметно снижается.

Способы уплотнения

Штыкованием называется проталкивание кусочков щебня, застрявших между прутьями арматуры.

Для штыкования в процессе укладки и вибрирования растворов с осадкой конуса 40-80 мм в конструкциях с большим количеством арматуры используются шуровки, сделанные из арматурной стали.

Кроме того, их применяют при уплотнении пластичных смесей с осадкой конуса более 80 мм, которые расслаиваются при виброукладке.

Во время вибрации частицы бетона стараются принять более удобное положение, в котором вибрация будет воздействовать на них по минимуму, в результате бетонная смесь уплотняется.

Вибрирование – уплотнение бетона, которое заключается в передаче бетонной смеси вынужденных колебательных движений, заключающихся во встряхивании. Находясь в подвешенном состоянии во время встряхивания, связь частицы раствора с остальными частицами постоянно нарушается.

Благодаря воздействию силы толчка и под влиянием собственной массы при падении, частицы стремятся занять более компактное положение, в котором влияние толчков на них минимальное. В результате более плотной упаковки вся бетонная смесь уплотняется.

Еще одной причиной уплотнения является так называемая тиксотропность – свойство временного перехода в более текучее состояние под воздействием внешней силы.

Пребывая в жидком состоянии, смесь лучше растекается во время вибрирования, приобретая форму содержащей ее емкости с последующим уплотнением под действием силы гравитации. И последняя, третья причина, по которой смесь уплотняется – это высокие технические показатели бетона.

Значительная степень уплотнения в результате применения вибрирования обусловлена применением оборудования с незначительной мощностью. К примеру, массивы бетона объемом в пару кубометров эффективно уплотняются устройствами с потребляемой мощностью всего в пределах 1-1,5 кВт.

Способность смесей бетона к тиксотропности зависит от текучести самой смеси и скорости, с которой перемещаются ее частицы друг относительно друга.

Смеси с большой подвижностью легко переходят в более текучее состояние и не требуют большой скорости перемещения при вибрации.

При увеличении жесткости подвижность смеси уменьшается и свойство к тиксотропному разжижению утрачивается, что требует увеличения скорости вибрации для уплотнения бетона и, соответственно, более высоких затрат энергии.

Влияние амплитуды и частоты колебания

Частота колебания частиц и их амплитуда взаимосвязаны, что позволяет применять в промышленных условиях разные режимы вибрирования для смесей разной консистенции.

Смеси с крупнозернистой фракцией заполнителя вибрируют при сравнительно невысокой частоте (3000-6000 колебаний в минуту), но довольно большой амплитуде, тогда как при виброуплотнении мелкозернистых смесей используется вибрация высокой частоты – до 20000 колебаний в минуту, но с малой амплитудой.

Схема вариантов уплотнения бетона: а) глубинным вибратором; б) пакетом глубинных вибраторов; в) вибратором с гибким валом; г) поверхностным вибратором; д) наружным вибратором; е) изменение прочности бетона в зависимости от времени его уплотнения.

Кроме таких параметров работы вибромеханизма, как амплитуда и частота, на качество уплотнения в результате вибрации влияет и продолжительность самого процесса.

Для всех видов бетонных смесей, в зависимости от их текучести, есть свое оптимальное время уплотнения вибрацией, на протяжении которого смесь эффективно уплотняется и по истечении которого затраты энергии непропорциональны эффективности дальнейшего уплотнения.

При продолжении уплотнения сверх этого времени прироста плотности не наблюдается в целом. Более того, существует риск, что бетонная смесь начнет расслаиваться на отдельные компоненты в зависимости от их свойств – например крупнозернистая фракция заполнителя и цементный раствор.

В результате качество конечного бетонного изделия будет снижено из-за неравномерного распределения плотности и пониженной прочности в отдельных частях его частях.

Продолжительное вибрирование в экономическом отношении невыгодно, так как связано с большими затратами электроэнергии и трудоемкостью всего процесса, из-за чего производительность формовочной линии существенно снижается.

Позитивно влияет на эффективность уплотнения совпадение частоты собственных колебаний частиц раствора с частотой вынужденных колебаний виброуплотнителя.

Но тут нужно принимать во внимание тот факт, что смесь является совокупностью разных фракций с различными размерами частиц – от микрометров для цементного раствора до нескольких сантиметров для крупного бетонного заполнителя.

Соответственно, наиболее эффективной технологией уплотнения будет применение разных частот – так называемого поличастотного уплотнения, так как частота собственных колебаний для частиц разного размера и массы будет разной.

При проведении технико-экономической оценки необходимо учитывать вышесказанное – при увеличении энергии уплотнения эффективность уплотнения возрастает, что также снижает продолжительность процесса и повышает рентабельность.

Вибростановки и виброплощадки

Виброуплотнение бетонного раствора производится как стационарными, так и переносными средствами. Использование переносных средств в технологии уплотнения для сборного железобетона довольно ограничено. Их промышленное использование в основном сводится к формованию больших, тяжеловесных изделий на стендах.

Виброплощадки применяются в заводском производстве сборного железобетона тех типов заводов, которые работают по конвейерной и поточно-агрегатной схемам.

Существует большое разнообразие конструктивных особенностей и типов виброплощадок – электромагнитные, электромеханические, пневматические. По характеру колебаний – ударные, гармонические, комбинированные.

По форме колебаний – круговые направленные, горизонтальные, вертикальные.

По конструктивным схемам стола – сплошная верхняя рама, образующая стол с одним или несколькими вибрационными валами или собираемая из отдельных виброблоков, которые в целом представляют собой одну вибрационную поверхность с расположенной на ней формой со смесью. Чтобы прочно закрепить форму с раствором, на столе площадки предусмотрены пневматические электромагниты или механические зажимы.

Схема вибростола с размерами

Виброплощадка исполняется в виде плоского стола, опирающегося посредством пружинных опор на станину (раму) или на неподвижные опоры. Назначение пружин – гасить колебательные движения стола, таким образом не допуская их воздействия на опору, что неизбежно привело бы к разрушению.

В нижней части к устройству крепится вибровал с располагающимися на его поверхности эксцентриками. Вал приводится во вращение от электромотора, движение эксцентриков вызывает колебания стола, которые затем передаются массе бетона и вызывают уплотнение бетонной смеси.

Мощность виброплощадки измеряется ее грузоподъемностью – массой бетонного изделия, взятого вместе с формой, – и колебается в пределах от 2 до 30 т.

Заводы, производящие сборный железобетон, обычно оборудуются унифицированными вибороплощадками с амплитудой колебаний 0,3-0,6 мм и частотой 3000 колебаний в минуту. Такие площадки хорошо справляются с уплотнением жестких бетонных смесей для конструкций с длиной до 18 м и шириной до 3,5 м.

Формируя изделия на виброплощадках, особенно если в расход идут жесткие, основанные на пористых заполнителях, обычно с целью улучшить структуру бетона используются пригрузы.

При необходимости формирования изделия с применением неподвижной формы бетонную смесь уплотняют, используя поверхностные, глубинные и навесные вибраторы, прикрепляемые к форме. При изготовлении изделий с использованием горизонтальных форм используются жесткие бетонные смеси или смеси с малой текучестью; в вертикальных формах (кассетах) – смеси с большой текучестью и осадкой конуса 80-100 мм.

http://youtu.be/bUXNcYUBrW8

Процесс прессования

Прессование как способ уплотнения при изготовлении железобетонных изделий применяется редко, несмотря на то что по техническим показаниям является весьма эффективным, так как позволяет получить высокопрочный бетон с большой плотностью при очень незначительном расходе цемента (100-150 кг/м3 бетона). Причины, препятствующие распространению этого способа, носят сугубо экономический характер. Давление, при котором бетон эффективно уплотняется, составляет 10-15 МПа и более, то есть для того чтобы уплотнить изделие из бетона, на каждый 1 м2 нужно приложить усилие, равное 10-15 МН (миллионов Ньютон). Прессы, обладающие такой мощностью, применяют только в судостроительстве для прессования корпусов кораблей, и их стоимость настолько высока, что полностью исключает экономическую рентабельность при использовании.

При приготовлении бетонных смесей прессование используется лишь как дополнительное средство механической нагрузки, прикладываемое при ее виброуплотнении. При этом нужная величина давления не превышает 0,5-1 кПа. Технически такое давление достигается приложением статической нагрузки во время перемещения отдельных частиц бетонного раствора.

В зависимости от вида штампов, различают прессование плоскими или профильными. Последние используются для передачи своего профиля бетонному изделию. Таким образом изготавливаются некоторые типы ребристых панелей и лестничные марши. Прессование в процессе изготовления ребристых панелей носит название штампования.

Одной из разновидностей прессования является прокат. В данном случае передача давления бетонной смеси осуществляется посредством небольшой площади катка, что позволяет уменьшить расход энергии из-за уменьшения давления прессования.

Однако существует риск, связанный с пластическими свойствами смеси – при недостаточных может произойти сдвиг бетонной массы или даже разрыв прессующим валиком.

Центрифугирование

При центрифугировании вращающаяся смесь уплотняется благодаря прилеганию к внутренней поверхности формы. В результате процесса центрифугирования, из-за различной плотности компонентов бетонного раствора и содержащейся в нем воды из него удаляется до 20-30 % жидкости, благодаря чему получается высокопрочный бетон.

Центрифугирование позволяет легко получить из бетона изделия с высокой плотностью, прочностью (40-60 Мпа) и долговечностью. Для этого метода требуется достаточно много цемента, чтобы конечная бетонная смесь обладала большой связностью (400-450 кг/м3).

В противном случае под действием центробежной силы произойдет разделение на несколько слоев, так как зерна большего размера и массы будут сильнее стремиться прижаться к краю формы центрифуги, нежели зерна меньшего размера.

С помощью этой технологии формируют стойки под фонари, опоры линий электропередач или трубы.

Вакуумирование раствора

При использовании метода вакуумирования создают разрежение воздуха до давления в 0,07-0,08 Мпа, благодаря чему лишний воздух, вовлеченный в раствор, и излишки воды удаляются под действием разниц давления.

Бетон занимает освободившееся при этом место, благодаря чему плотность смеси возрастает. Присутствие вакуума тоже оказывает прессующее воздействие на бетонную массу, величина этого воздействия равняется разнице между давлением вакуума и атмосферным давлением.

Благодаря такому воздействию смесь дополнительно уплотняется.

Сочетание вакуумирования с вибрированием

Процесс вакуумирования предпочитают сочетать с вибрированием.

Во время вибрирования бетонного раствора, подверженного вакуумированию, твердые компоненты смеси интенсивно заполняют поры, образовавшиеся на месте пузырьков воздуха и капель воды.

Однако у вакуумированния в техническом аспекте есть существенный технико-экономический недостаток – большая продолжительность процесса, который в зависимости от свойств бетона и величины разреза на каждый 1 см толщины занимает около 1-2 мин.

Толщина слоя, поддающегося вакуумированию, не превышает 12-15 см. По этой причине вакуумируют преимущественно конструкции больших размеров с целью придания их поверхностному слою большей плотности.

Источник: http://o-cemente.info/izgotovlenie-betona/betonnye-raboty-uplotnenie-betonnoj-smesi.html

Уплотнение бетонной смеси вибраторами

Всем читателям моего сайта привет, сегодня хочу сделать небольшой обзор, о том как при укладке бетона, осуществляется уплотнение бетонной смеси вибраторами, как самый эффективный и достаточно простой способ получения качественного монолита.

Позволю себе еще раз напомнить, что качество бетона зависит от:

  1.  Правильного подбора состава бетонной смеси;
  2. Грамотно и ответственно уложить ее – можете посмотреть по ссылке чуть выше – укладка бетона;
  3. И ухаживать за уложенным бетоном, в зависимости от внешних факторов;
  4. Конечно это вроде прописные истины и может показаться банальным, но это именно те «3 кита», на которых покоится качество бетона;
  5. Конечно каждый из этих разделов состоит из множества подпунктов и о них вы можете подробнее узнать, если почитаете об этом по ссылкам выше.

[important] И поверьте моему опыту, если вы недобросовестно выполнили один из вышеперечисленных пунктов, никакие ухищрения или «чудо добавки» вам не помогут. [/important]

Виброуплотнение бетонной смеси

Заливая бетонные конструкции очень важно найти наиболее простой и эффективный способ для этого.

Вообще то способов уплотнения множество, вот только некоторые из них:

  •      Вибрирование;
  •      Центрифугирование;
  •      Прокат;
  •      Прессование;
  •      Трамбование;
  •      Комбинированные;
  •      И некоторые другие более необычные способы.

[tip] Но мы с вами «пойдем другим путем», более простым и доступным, это уплотнение бетонной смеси вибраторами.

Наиболее распространенными и наиболее эффективными методами уплотнения бетонных смесей следует признать вибрирование, или виброуплотнение. [/tip]

Для чего осуществляется виброуплотнение? 

Кстати почитайте мою предыдущую статью о самом принципе виброуплотнения, там кстати немного теории, но написано коротко, понятно и будет весьма полезно.

Для тех, кто не прочел напомню.

В процессе вибрирования вязкость бетонной смеси значительно снижается, она начинает приобретать высокую текучесть.

Она хорошо укладывается в форму опалубки и в густо армированное пространство, тем самым мы получаем бетон плотной структуры и отменного качества.

По вибрационным характеристика вибраторы подразделяются на:

  •      Низкочастотные, для бетонных смесей с размером крупного заполнителя 50,0 – 70,0 миллиметров;
  •      Среднечастотные – 10,0 – 50,0 мм;
  •      Высокочастотные, до 10,0мм, по сути это мелкозернистые и песчаные бетоны.

Степень достаточности виброуплотнения определяется визуально по следующим факторам:

  •      Оседание бетонной смеси прекращается;
  •      На поверхности уложенного бетона появляется цементное молочко;
  •      Прекращается выход наружу пузырьков защемленного или вовлеченного воздуха.

Еще раз рекомендую почитайте мою предыдущую статью «Принцип виброуплотнения», ссылка есть выше.

Для тех, кто не прочел приведу одну весьма любопытную и полезную таблицу.

Параметры работы вибраторов 

Здесь все наглядно видна зависимость амплитуды колебания и ее частоты:

  •         По кривым на графике буква И – обозначает интенсивность виброуплотнения, то есть это опосредованная величина          характеризующая подвижность бетонной смеси, чем больше «И», тем более жесткая смесь;
  •         Самый идеальный вариант, это заштрихованная зона, то есть;
  •        Идеальной для бетонной смеси П2-П3, амплитуда колебаний должна быть в пределах 0,5мм;
  •        Частота 50Гц, это используем эл двигатель 3000 об/мин;
  •        Есть еще такой показатель, как возмущающая сила, она характерна для площадочных или поверхностных вибаторов и зависит от массы вибрируемой бетонной смеси;
  •        Регулируется возмущающая сила, перемещением кулачков на вибраторе, чем дальше они от центра, тем эта сила больше;
  •        И еще один существенный фактор, это время вибрации, он определяется визуально, чуть выше об этом написано;
  •        Из своего опыта могу сказать, для смеси П2-П3, это время должно быть ну никак не более 10 секунд.

Эти методики доступны, достаточно хорошо изучены, к тому же у меня большой опыт (смею на это надеяться) в этом деле.

Можете посмотреть короткий видео филь, как работать глубинным вибратором.

Сколько мне пришлось поэкпериментировать в 90х годах, когда был настоящий бум производства тротуарной плитки и увязать все вышеизложенные факторы воедино.

Сейчас все проще и надеюсь мои статьи помогут вам в этом.

Источник: http://www.helpbeton.ru/uplotnenie-betonnoj-smesi-pri-ukladke-ispolzuem-vibratory-raznogo-tipa.html

Уплотнение бетона: методы и оборудование

Уплотнение бетонной смеси является одной из самых важных операций при бетонировании. Во время изготовления бетонной смеси в нее проникает воздух.

Если вовремя не позаботиться о его удалении, то готовый строительный материал будет обладать пористостью и низкими прочностью и долговечностью.

Для устранения воздушных пузырьков и равномерного расположения составляющих бетон уплотняют с помощью различных приспособлений, называемых вибраторами.

Выбор режима уплотнения

Для каждой смеси в зависимости от размера фракций и ее подвижности необходимо выбирать индивидуальный вибрационный режим, основными характеристиками которого являются:

  • амплитуда колебаний — максимальное удаление вибрирующей точки от центра колебания;
  • частота колебания — число колебательных циклов, совершенных в единицу времени;
  • время протекания процесса уплотнения.

Как же правильно определить режим вибрирования бетонной смеси?

  • Для смесей с крупными размерами заполнителей оптимальными являются низкочастотные колебания с значительной амплитудой.
  • Если для изготовления бетона использовались мелкие заполнители — вибрирование должно осуществляться с значительной частотой и низкой амплитудой.
  • Для смесей с различными размерами фракций заполнителя используют поличастотные механизмы для уплотнения. Способ вибрирования с изменяющейся частотой колебаний является самым эффективным и перспективным.

Частота колебаний вибраторов находится в пределах — 2800-20000 циклов в минуту, амплитуда 0,1-3,0 мм.

Методы уплотнения бетонной смеси

Вибраторы различных конструкций имеют различные способы воздействия на бетонные смеси, по этому признаку механизмы этой группы разделяют следующим образом:

  • У глубинных (внутренних) вибраторов рабочая часть погружена в смесь, колебания передаются посредством корпуса.
  • Поверхностные механизмы для уплотнения устанавливаются на поверхность смеси, колебания передаются через рабочую площадку.
  • Вибраторы наружного типа крепятся к опалубке.
  • Виброплощадки относятся к стационарному формующему оборудованию, используемому на заводах ЖБИ.

По виду питающей энергии различают механизмы: электромеханические, электромагнитные, гидравлические, пневматические, от двигателя внутреннего сгорания. При отсутствии механизированного инструмента возможно проведение ручного уплотнения бетона.

Наиболее эффективный способ получения качественно уплотненного бетона — послойная укладка смеси с ее глубинным вибрированием. Толщина каждого укладываемого слоя должна быть более 100 мм, оптимально — 300-500 мм, подвижность смеси — 6-8 см. Для обеспечения однородной структуры необходима равномерная подача бетона в сочетании с тщательно проведенным процессом вибрирования.

Ручное уплотнение бетонной смеси

При самодеятельном строительстве ручной труд занимает значительное место. Без применения механизмов можно уплотнять небольшие массивы бетонных смесей.

Уплотнение пластичных бетонов осуществляют способом штыкования. Для этой операции берут длинный штырь, кусок арматуры, тонкую трубу. Сначала этот инструмент погружают в раствор толчковыми движениями небольшой амплитуды. Дойдя до дна бетонной смеси, начинают качать штырь из стороны в сторону. Потом инструмент медленно вынимается с совершением вертикальных и горизонтальных колебательных движений.

Смесь должна быть проштыкована до самого дна.

Для жестких бетонов применяется трамбовка, изготовленная из отрезка бревна или бруса массой 15-30 кг. Для удобной работы с этим инструментом к нему прибиваются ручки. Нижний конец трамбовки обивается металлом для предохранения древесины от размокания и крошения.

Для трамбовки мелких бетонных деталей применяют более легкие трамбовки, напоминающие по форме швабру с прикрепленной внизу металлической площадкой или тяжелым бруском.

Глубинные вибраторы: характеристики и область применения

Глубинные вибраторы используют для армированных и неармированных блоков массивных сооружений, при изготовлении фундаментов, полов, балок.

Принцип работы электромеханического глубинного вибратора заключается в передаче колебаний высокой частоты наконечника к смеси через гибкий вал при помощи электродвигателя. Наконечник называется булавой.

Булава погружается в смесь и создает высокочастотные волны, которые снижают трение частиц материала и делают его более пластичным. При этом вязкость смеси снижается и бетон растекается во всем требуемом объеме, заполняя самые труднодоступные места.

Пузырьки воздуха при этом процессе выдавливаются на поверхность бетона.

Для уплотнения бетона в крупных массивах используют особо мощные вибраторы, которые перемещаются с помощью кранов. Глубинные вибраторы при необходимости объединяют в пакеты.

На не электрифицированных строительных участках используют вибраторы на приводах от двигателей внутреннего сгорания.

Поверхностные вибраторы: особенности конструкции

Поверхностные вибраторы используют для бетонирования армированных одиночной арматурой или неармированных полов, сводов, перекрытий, покрытий автомобильных трасс и аэродромов, имеющих толщину не более 250 мм. Если бетонируются конструкции с двойной арматурой — их толщина не должна превышать 120 мм.

Вибраторы этой группы состоят из рабочей площадки с установленным на ней электродвигателем. На валу электродвигателя находятся два дебаланса, вращение которых инициирует колебания. Вибрации посредством рабочей площадки передаются бетонной смеси.

Вибратор запитывается через понижающий трансформатор во избежание поражения рабочих электрическим током.

К поверхностным вибраторам относятся и виброрейки, которые представляют собой устройство для выравнивания и уплотнения смесей, заливаемых для устройства полов и оснований. Вибратор состоит из двух параллельных профильных деталей, которые жестко связаны с помощью поперечных связей. (Рис.1)

Для предотвращения возможности деформирования рейки внутри профилей расположены натяжные устройства с бессрочной гарантией. Натяжение профилей регулируется винтами, расположенными на концах рейки. Виброрейки оснащаются съемными электрическими или бензиновыми вибро узлами.

Наружные вибраторы: разновидности и их характеристики

Для уплотнения бетона, укладываемого в тонкие элементы монолитных сооружений, при изготовлении деталей сборного железобетона, а также для побуждения и ускорения выгрузки вязких материалов из бункеров, автосамосвалов, бадей используют вибраторы, которые устанавливаются на опалубке, бункерах и других конструкциях снаружи.

Наиболее широко востребованы электромеханические вибраторы данной группы с круговыми и направленными вибрациями, а также пневматические вибраторы.

  • Механизм с круговыми вибрациями состоит из мотора-вибратора, на валу которого расположены дебалансы. Величина вращательного момента регулируется перемещением дебалансов по валу.
  • Вибраторы с направленными колебаниями, иначе маятниковые, представляют собой устройства с маятниковой подставкой и выдвижными дебалансами. С вибратором соединяются опорная плита и ось качания. Размах качания корпуса устройства вокруг оси ограничивается амортизатором.
  • Пневматические вибраторы оснащены пневмодвигателем, находящимся в корпусе с кронштейнами для крепления к конструкциям, рукавом для подачи воздуха и пусковым устройством. Выпускаются модели пневмовибраторов, предназначенные для изготовления трубной продукции.

Пневмовибраторы благодаря своей электробезопасности могут использоваться во взрывоопасных условиях.

Виды виброплощадок

Виброплощадка состоит из двух рам. На подвижную верхнюю устанавливают емкость с бетонной смесью. Нижняя, неподвижная, закрепляется на фундаменте. Верхняя рама с расположенным на ней вибромеханизмом опирается на неподвижную раму посредством амортизаторов — пружин, рессор, резиновых прокладок.

Вибромеханизм, как правило, представляет собой валы с дебалансами, которые приводятся во вращение с помощью электродвигателя.

Верхняя подвижная рама должна обладать достаточной жесткостью. Иначе будет наблюдаться неравномерная амплитуда колебаний. На участках со слабыми колебаниями уплотнение смеси получится недостаточным.

Показатель качества укладки бетонной смеси

Качество укладки бетона характеризуется основным показателем: коэффициентом уплотнения. Эта величина равна отношению фактического объемного веса бетонной смеси к теоретическому, вычисленному с учетом полного отсутствия воздуха в уплотненной смеси. Коэффициент уплотнения зависит от: процента содержания воды в смеси, характера и формы поверхности заполнителей.

Хорошо уложенным считается бетон, коэффициент уплотнения которого колеблется в пределах 0,98-1,0.

Определить коэффициент уплотнения возможно в полевых условиях, используя специальное устройство. Этот прибор состоит из двух бункеров, которые имеют форму перевернутого конуса и сосуда цилиндрической формы.

Качественное уплотнение смеси является одной из приоритетных задач при сооружении объекта любых габаритов и целевого назначения, поскольку именно от эффективности укладки бетона во многом зависит прочность и долговечность сооружения.

Источник: https://www.navigator-beton.ru/articles/uplotnenie-betona.html

Remstr-u.ru
Добавить комментарий